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Predicting Movement Paths in Search
and Rescue Operations Using RL

Junhee Kim, Heedam Kwon, Seongil Jo, Jaeoh Kim
1ottt ul GHATE T INHA UNIVERSITY

Abswract N Roward Function Design B Resuts |

In search and rescue operations, achieving operational success Designing the Reward Function for Optimal Pathfinding: Performance Metrics
is challenging even when substantial resources are deployed. This + Rewards are crafted to incentivize optimal behaviors and + Vanilla DQN:
study develops a predictive model for missing person movement penalize inefficiencies.

— Average Reward: +88 + 1.2
— Success Rate(Find Road Rate): 81.3%

paths using reinforcement learning (RL) technigues based on deep + Each component of the reward function is calibrated for ef-

neural networks. fective learning in complex terrains.
The research compares Vanila Deep Q-Network (DQN) and « Pointer Network DQN:
Pointer Network DQN, demonstrating that the Pointer Network Reward/Penalty Descripti — Average Reward: +102 £ 0.8
i ; it P Path following re- | Base reward (+0.5) for staying on the ’ .
DQN achleve-s mure. accurate and consistent path predictions in ward predefined path — Success Rate(Find Road Rate): 94.7%
complex terrain conditions. Water proximity re- | Additional reward (+0.15) for being near
ward water without entering it. Average Re
Directional consis- | Reward (+0.1) for maintaining the same w0 ! AN , ol ” M'“W PSRy per
tency direction as previous movement. ) P""‘* i )
_ Exploration reward | Encourages new locations by adding a o1 A i e e
1. Geospatial Data: small reward (+0.02) for not revisiting Bt
: P ) previous positions. U |
+ Digital Elevation Model (DEM): Represents terrain height. Diversity penalty Penalty (-0.1) for repetitive back-and- o] : - L =
forth movements within a small area. : - T e -
- Shapefiles: Includes forest roads, rivers, hiking trails, and Stationary penalty Penalty (-0.2) for not moving from the o 1008 Cumvs v pates
accident points. current position. .
Revisit penalty Penalty proportional to revisit count (- ol
2. Data Preprocessing: 0.05 x number of visits) for the same po- R
sition. Hos \*«,ﬂ\%
+ Rasterization of geospatial data to grid format. Slope penalty Penalty (-0.05) for traversing areas with ‘ S :
geos g a slope greater than 30 degrees. . | A",'Mmf”“"‘”“"""f“"”"“"""‘,
«+ Binaryization to express the presence or absence of a par- Water penalty Large penalty (-0.5) for entering water e e
ticular terrain regions. ) _‘
Boundary reward Bonus rev\!rard (+0.03) for staying within Figure 3: Average Reward & Loss Comparison
+ Calculate the DEM to extract additional topographic features the predefined search area.
such as slope, roughness, etc Proximity reward Reward (+0.3 / distance) for moving
closer to the predefined path during ex-
ploration mode.

Training Process

1. Data Preparation

+ Processing DEM and shapefile data through rasterization
and binarization

.G il et ializath . .
F:'?u‘re 1 v Data Vi i DEM and Ex + Converting environmental data into 8D state vectors con-
ample taining elevation, slope, trail presence, water proximity, and

terrain features
H + Normalizing all features to [0,1] range for consistent network
Model Architectures hor

1. Vanilla DQN:
+ Simple feedforward neural network with two hidden layers.

2. Training Setup

Experience buffer size: 10,000 samples
+ Outputs Q-values for eight possible movement directions.

2. Pointer Network DQN:

+ Encoder-decoder LSTM architecture with attention mecha-
nism.

Figure 4: Simulated Path of Agent

Epsilon-greedy exploration: 0.99 — 0.1 with scheduler

Network updates: Adam optimizer (Ir = 0.001)

+ Target network synchronization: Every 1000 steps
+ Designed to handle complex terrain features and predict op-
timal paths.

Maximum steps per episode: 1000

Discount factor (+): 0.99 for future reward consideration

— = 3. Model Checkpointing

= + Best model preservation based on reward metrics

Vanilla DON Polnter DO + Regular checkpoints every 10 episodes

« Early stopping when performance plateaus

Figure 2: Vanilla DQN & Pointer DQN Architecture
+ Training statistics logged for performance analysis

Model Inputs:
+ The state is represented as an 8-dimensional feature vector:

— self.dem[y, x]: Elevation at the current position.

.
— .

‘ Figure 5: Gradio Interface for Displaying Simulation Path

— self.slope(y, x]: Slope at the current position.

— np.mean(dem_patch): Average elevation in the sur-
rounding patch.

— np.mean(slope_patch): Average slope in the sur-
rounding patch.

— np.max(road_patch): Maximum road presence in-

dicator in the patch. The Pointer Network DQN demonstrates significant improve-

ments compared to the Vanilla DON in terms of reward and loss,

' ‘ Conclusion & Future Wo
E \ | achieving much faster convergence. Additionally, it exhibited the

{_j__ ability to understand and adapt to complex and diverse terrain rela-
tionships through the Attention Mechanism.

— np.max(forestroad_patch): Maximum forest road
presence indicator in the patch.

m.oBﬂEMEmﬂ}-m]

= op.max(climbpath_patch): Maximum climbing L Although the model considered various types of terrain, it was
path presence indicator in the patch. limited by the sparsity of geographic data such as water-related fea-
— np.std(dem_patch): Standard deviation of eleva- tures and trail information.
tion values in the patch. For future research, alternative reinforcement learning method-
ologies such as Proximal Policy Optimization (PPO) or Soft Actor-
Actions(Model Qutput): Figure 6: Training process workflow showing data preparation, Critic (SAC) could be explored. These methods offer potential ad-

training loop, and monitoring stages vantages in terms of stability and sample efficiency. PPQO’s conser-
vative policy updates could help maintain consistent performance
across different terrain types, while SAC's entropy maximization ap-
proach might lead to more robust exploration strategies in complex
environments.

+ 8 probabilities for 8 actions in a particular state are returned.
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Prediction

A p of solubility is crucial for early-
stage drug discovery and environmental chemistry. We present a
systematic evaluation of a predictive framework integrating Graph
Attention Networks (GATs) with various Bayesian regression mod-
els to deliver both point estimates and principled uncertainty quan-
tification. A GAT encoder constructs rich molecular embeddings
from graph topology. These embeddings, along with traditional RD-
Kit descriptors, are used to train Ridge, Bayesian Ridge (BR), and
Bayesian Kernel Ridge (BKR) models. By comparing these combi-
nations, we analyze the independent and synergistic contributions
of learned graph features and p ilistic reg i iqt
aiming to identify the most robust and reliable framework for solubil-
ity prediction.

Keywords:  Solubility Prediction, Graph Attention Networks,
Bayesian Ridge, Bayesian Kernel Ridge, Uncertainty Quantification

Dataset & Preprocessing

+ Dataset: A benchmark collection of 9,914 molecules with
xperi d aqueous ility (logS).

Feature Sets: Two distinct feature types were prepared
for model comparison: RDKit Descriptors (over 70 tradi-
tional features for baseline models) and Molecular Graphs
(graph representations for GNN models).

Atom Features: Each atom (node) is featurized with an 8D
vector including element type (H/C/N/O/F), degree, H-count,
and aromaticity.

Target Transformation: A Yeo—Johnson power transform is
applied to the logS target to reduce distribution skewness,
stabilizing variance and aiding model convergence.

Data Split: An 80% train, 20% test split was performed,
ifi iles to ensure a distribution

" g N
for reliable evaluation.

Dataset Visualization

Figure 1: Left: Sample molecular structures are converted into
graph representations for the model. Right: The Yeo-Johnson

ion miti the heavy of the original logS
distribution, resulting in a more symmetric, Gaussian-like shape that
is more suitable for model training.

Model Architecture

+ Graph Feature Extractor (GAT): A two-layer Graph Atten-
tion Network (GAT) with GraphNorm and ELU activation
processes molecular graphs. It uses multi-head attention
and concatenates mean, max, and sum pooling to generate
a fixed-size graph embedding for each molecule.

Regression Heads: The extracted features (either GAT
ings or RDKit i are fed into one of sev-
eral regression models:

— Ridge: A standard deterministic linear model.

- Bayesian Ridge (BR): A probabilistic linear model
that provides uncertainty.

- Bayesian Kernel Ridge (BKR): A probabilistic non-
linear model using kernels to capture complex rela-
tionships and provide uncertainty.

Model Architecture Diag

arcem 3 arcem 3 vy
SRl (o] SERI || s | | 3T
T s (R

Figure 2: The GAT workflow: SMILES strings are converted to
molecular graphs. The GAT Encoder processes these graphs to
create learned embeddings, which are then used by various regres-
sion heads for prediction.

Bayesian Kernel Ridge on GAT
Embeddings for Molecular Prediction

Junhee Kim, Seongil Jo
INHA University

Methodology

INHA UNIVERSITY

Network (GAT).

neighbor features h; weighted by attention coefficients a;:

,
h =o

consistent comparison of performance.

» Feature Sets: Two sets of features were compared: traditional RDKit descriptors and learned embeddings from a Graph Attention

+ GAT Architecture: The encoder uses two GATConv layers with multi-head attention. Node features h; are updated by aggregating

JENULi}

+ Regression Models: A non-linear Bayesian Kernel Ridge (BKR) model was benchmarked against BR and standard Ridge. All
share the Ridge L2-regularization principle, which minimizes the following objective function:

min [ly — Xwli3 + X [wIi

+ Standardized Evaluation: All models were trained and evaluated on the Yeo-Johnson transformed logS target to ensure a fair and

Z aWh;

Experiments & Results

This experiment systematically evaluates the impact of feature representation and model choice on solubility prediction. We designed a

comprehensive comparison to isolate the effects of GAT embeddings, Bay and kernel-based non-li ity. The key results from
the five models are pi below:

Model RMSE (YJ) MAE(YJ) R2(YJ) Coverage (%)

Ridge (RDKit Features) 0.8531 0.6582 0.6981 N/A

Bayesian Ridge (RDKit Features) 0.8015 0.6104 0.7315 94.1%

Bayesian Kernel Ridge (RDKit Feat.) 0.6949 0.5533 0.7923 94.5%

GAT + Bayesian Ridge 0.6521 0.5118 0.8111 95.0%

GAT + Bayesian Kernel Ridge 0.6288 0.4875 0.8289 95.2%

features directly from molecular topology.

which validates their uncertainty estimates.

The combination of GAT embeddings and a Bayesian Kernel Ridge (BKR) head achieves the best performance (R? = 0.8289),
demonstrating the synergistic effect of learned graph features and non-linear probabilistic modeling.

* GAT embeddings consistently outperform RDKit descriptors. This is evident across all model types, with RMSE dropping from
0.8015 to 0.6521 for Bayesian Ridge, and from 0.6949 to 0.6288 for Bayesian Kernel Ridge. This highlights the superiority of learning
Within each feature set, more complex probabilistic models yielded better results (BKR > BR > Ridge), confirming the benefits of both
Bayesian uncertainty modeling and capturing non-linear relationships.

All Bayesian models produced reliable 95% credible intervals with empirical coverage rates near the nominal level (94.1% - 95.2%),

Training Loss Curve
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Sos
@
=
<
s 04
£
03
02 2
o 25 50 s 100 125 150 175 200

Epoch

Figure 3: The training curve for the GAT encoder plots MSE loss on
the Yeo-Johnson transformed data per epoch. The smooth conver-
gence indicates effective and stable training.

Uncertainty Visualization

Figure 5: Predicted vs. observed values for the GAT+BKR model.
Each point’s vertical bar represents its 95% credible interval. Most
intervals capture the true value, visually confirming the high cover-
age rate.

Observed vs Predicted
/ g N

mantormes tgs (1

Figure 4: This hexbin plot for our best model (GAT+BKR) shows a

high density of p along the (y=x) line,
model y and calibration on the transformed scale.
COnc|u n
This i ion of predicti ks for aqueous sol-
ubility yielded three key findings:
. Fi : GAT-derived ings i
and signifi outperform ti RDKit i in

predictive accuracy.

Optimal Model: The combination of GAT embeddings with
a non-linear Bayesian Kernel Ridge (BKR) model yielded
the best results by effectively capturing complex data rela-
tionships.

. L y: The Ks models
provide well-calibrated uncertainty estimates, which are crit-
ical for risk assessment in drug discovery.

Future work will focus on applying this robust framework to predict
other critical ADMET properties, such as metabolism and toxicity..




Q10{ % & 7|t A xS

2025 2o} Q1 B X| 5 A ElX| 2.0 X&) ojo|Zajol

Step1. 4x{8} (512x512 — 256x256, L-CAD)
a) {

Step2. E848} (256x256 — 512x512, CATANet)

IIl. Conclusion

I
Mare Aalst 3.2 F mjo|ZatQl Yo Zut

| 15l=
— T o — - "1 HHe
iz Xl -.-l:LI' Oolo X o *I'-.- 'L S I'I o 74 -.-I'-.- C 1. MxHE} 2. X543} 3.85%
OI ule == % o TI OH _I_OH o 2I'(CATANet)J-I' -?-E o= =2 oﬂ & 3 |—I-7:" (5612x512 - 256%256, L-CAD) (256%256 —512X512.FATAN90 (zof, cﬂqu|_ﬂlg'ﬂ~”5' guig—i—q) :
EI'OIEEI'OLI% JkE-|7:"-°;!' v : ) — == —

Awards : 2025 Q1o 21 SX| 5 HEEIX| iRl 2 F |22t (Team Posterior)

Keywords : Diffusion Model / Colorization / Super Resolution / Image Processing



H| 0| X| 2k B2

= 0| 8¢t &4

=R

Sl2fd b MY B8 oAt H{0|X|QF ' HAlo] 28AA
‘el E et BDkvR RE S A ko, A A FAH HO|E &
E5| HZB

Project

HE HEY(DNN)S SOl 2 Ha 2ho| H| MY 42285 58 W (Latent
Feature) 2 F=E5}11, 0| & 7t A QF T2 M| A 7|4 H| O] X| 2 7 'H T Mof]

a2golo 3FES 01I*3*

7| & KRR % BKMR 2 2! CH{H| MAE 0.1895, MSE 0. 0629E ‘50| SFHE[R o,
o= == S e M4=510 AME| 7Lset o5 S HSE
AN FA%E HI0|E & 0|83l Loocv WAl = %5'7% T35t mEo|

o
oL A 7} QlHIS M =2 ol =38}

>-I

Publication : Applied Sciences, Vol.15, No.9, Article 9487 (2025)

Keywords : Bayesian Deep Kernel Machine Regression / Gaussian Process

Predicted Values

o = N W B~ U o
L . ) A L L L )

~N
I

Predicted Values

B
1

w
L

Paper: Predicting Flatfish Growth in Aquaculture Using Bayesian Deep Kernel Machines

KRR: Predicted vs True
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BDKMR with Equal: Predicted vs True
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BKMR: Predicted vs True
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True Values

BDKMR: Predicted vs True
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True Values True Values
Model MAE MSE
KRR 1.1141 3.5665
BKMR 0.6977 0.9447
BDKMR (Equal) 0.2006 0.0721
BDKMR 0.1895 0.0629
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