PyMC를 이용한 확률적 프로그래밍 입문
Introduction
Introduction
이 포스팅은 “Bayesian Graph Convolutional Neural Networks for Semi-supervised Classification” 논문을 읽고 BGCNN에 대해 정리한 글입니다.
이 포스팅은 “Make Me a BNN: A Simple, Scalable Strategy for Estimating Bayesian Uncertainty” 논문을 읽고 ABNN의 핵심 아이디어에 대해 정리한 글입니다.
이 포스팅은 Khan 등 (2023)의 논문 “The Bayesian Learning Rule”를 읽고 정리한 글입니다.
이 포스팅은 Venkitaraman et al. (2018) 의 논문 Gaussian Processes Over Graphs를 읽고 정리한 글입니다.
이 포스팅은 Bayesian Linear Regression에 대한 개념을 소개하는 글입니다.
이 포스팅은 Gaussian Process에 대한 개념을 소개하는 글입니다.
이 포스팅은 Maia et al. (2022)의 논문 “GP-BART: a novel Bayesian additive regression trees approach using Gaussian processes”를 읽고 정리한 글입니다.
본 포스팅에서는 Bayesian Kernel Machine Regression (BKMR)의 이론적 배경을 정리하고 간단한 실습을 진행합니다.
이 포스팅은 Chipman et al. (2010)의 논문 “BART: Bayesian Additive Regression Trees”를 읽고 정리한 글입니다.
본 포스팅에서는 베이지안 추론에서 핵심이 되는 MCMC(Markov Chain Monte Carlo) 알고리즘의 원리와 구현 방식을 살펴보겠습니다.