Graph PCA
개요 데이터의 저차원 표현을 학습하면서, 그래프 인접성(유사도)을 보존하도록 정규화 항을 추가한 PCA 변형입니다. 핵심은 그래프 라플라시안 $L$을 이용한 매끄러움(smoothness) 패널티 $λ tr(Z^T L Z)$ 입니다. 이 항은 그래프에서 이웃한 노드들의 임베...
개요 데이터의 저차원 표현을 학습하면서, 그래프 인접성(유사도)을 보존하도록 정규화 항을 추가한 PCA 변형입니다. 핵심은 그래프 라플라시안 $L$을 이용한 매끄러움(smoothness) 패널티 $λ tr(Z^T L Z)$ 입니다. 이 항은 그래프에서 이웃한 노드들의 임베...
이 포스팅은 Probabilistic Principal Component Analysis (PPCA)에 대해 공부하며 정리한 글입니다. Tipping & Bishop (1999)의 고전 논문을 기반으로 수학적 정의, 추론 과정, 장단점을 설명하겠습니다.
이 포스팅은 Bayesian Principal Component Analysis (BPCA)에 대해 공부하고 정리한 글입니다.
이 포스팅은 여러가지 차원축소(Dimensionality Reduction)기법들에 대해 소개하고 간단한 시각화를 해보는 글입니다.